Multiple Classifiers-Assisted Evolutionary Algorithm Based on Decomposition for High-Dimensional Multiobjective Problems

نویسندگان

چکیده

Surrogate-assisted multiobjective evolutionary algorithms (MOEAs) have advanced the field of computationally expensive optimization, but their progress is often restricted to low-dimensional problems. This manuscript presents a multiple classifiers-assisted algorithm based on decomposition, which adapted for high-dimensional problems in terms following two insights. Compared approximation-based surrogates, accuracy classification-based surrogates robust few training samples. Furthermore, local classifiers can hedge risk overfitting issues. Accordingly, proposed builds with support vector machines (SVMs) decomposition-based algorithm, wherein each classifier trained corresponding scalarization function. Experimental results confirm that competitive state-of-the-art and efficient as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIBEA: Prospect Indicator Based Evolutionary Algorithm for Multiobjective Optimization Problems

This paper proposes and evaluates an evolutionary multiobjective optimization algorithm (EMOA) that uses a new quality indicator, called the prospect indicator, for parent selection and environmental selection operators. The prospect indicator measures the potential of each individual to reproduce offspring that dominate itself and spread out in the objective space. The prospect indicator allow...

متن کامل

Multiobjective Evolutionary Algorithm Approach For Solving Integer Based Optimization Problems

Multiobjective Evolutionary algorithms (MOEAs) are often well-suited for complex combinatorial Multiobjective optimization problems (MOPs). Integer based MOPs are prevalent in real world applications where there exist a discrete amount of a component or quantity of an item. Presented here is the application of a building block based MOEA, the MOMGA-II, to a NP Complete problem and real-world ap...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Solving Multiobjective Optimization Problems using Evolutionary Algorithm

Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and practitioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective...

متن کامل

Decomposition-based evolutionary algorithm for large scale constrained problems

Cooperative Coevolutionary algorithms (CC) have been successful in solving large scale optimization problems. The performance of CC can be improved by decreasing the number of interdependent variables among decomposed subproblems. This is achieved by first identifying dependent variables, and by then grouping them in common subproblems. This approach has potential because so far no grouping tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Evolutionary Computation

سال: 2022

ISSN: ['1941-0026', '1089-778X']

DOI: https://doi.org/10.1109/tevc.2022.3159000